
Tutorial 7: Scene Management

Summary

Using a scene graph gets you well on your way to the high-performance rendering of lots of objects.
However, we still need to sort out the issue of of transparent objects requiring a specific render order.
Also, it is common to skip the drawing of geometry outside of the view - an operation called frustum
culling. In this tutorial, you’ll see how to perform both frustum culling and geometry ordering, as
well as as how to use this ordering to improve rendering performance.

New Concepts

Node Separation, Node Sorting, Frustum Culling

Introduction

Node Ordering

Transparency

In the depth & transparency tutorial, you saw how when it comes to rendering geometry with alpha
blending, the order of rendering matters. A basic example is that of two objects - one transparent,
one opaque, with the transparent object physically in front of the other. If the opaque object is drawn
first, alpha blending works correctly, but if the transparent object is drawn first, alpha blending fails.
Ideally, transparent geometry should always be drawn after other geometry, and should be drawn in
back to front order. That is, the transparent mesh furthest away from the camera is drawn first, then
the next closest, and so on, until finally the closest transparent mesh is drawn. This will allow alpha
blending to take place, and hopefully render correct transparent geometry. Even this isn’t perfect, as
transparent meshes could still intersect, either with other meshes or even themselves - the only way
to really render transparent geometry is to do so on a per triangle basis! But for games, splitting
transparent objects off and drawing them from back to front generally suffices.

Overdraw

It turns out, that sorting opaque geometry has a benefit, too. Under normal rendering conditions, as
mesh geometry is passed through the graphics hardware pipeline, the fragment shader will be ran on
each fragment the geometry covers. Only after the fragment shader has ran will the depth test be
performed, with the result of the fragment shader dropped if the fragment fails the depth test. If an

1

expensive fragment shader is being used, this can be very wasteful. This is part of a more general
problem known as overdraw - with randomly ordered input geometry, overlapping objects will cause
many fragments to be processed for each final on-screen pixel. Fortunately, both of these problems can
be alleviated by sorting the geometry before rendering, just like with transparent objects. However,
rather than sorting the objects from back to front (something which would actually create a worst-case
scenario for overdraw!), the objects are drawn from front to back. For example, take this simple scene:

If object B is draw before object A, the colour and depth writes caused by the rendering of object
B will be wasted, as object A entirely obstructs object B. If object A is drawn first, the depth and
colour writes of object B will be skipped entirely, saving bandwidth. Rendering front to back will
still perform the fragment shader multiple times per pixel, but reduces memory bandwidth - as a
well-behaved, ordered scene will more likely fail the depth test more often, resulting in less writes to
graphics memory.

Early Z Test

It’s not quite true that the fragment shader will always run on fragments that will never be seen
due to depth test failure. Modern graphics hardware has an early z stage in its pipeline. This is a
depth test component that is actually placed before the fragment shader in the pipeline - so we can
avoid those expensive fragment shader operations after all! As long as certain conditions are met,
potential fragments can be dropped before they hit the fragment shader, and sorting objects from
front to back massively increases the chances of this early z taking place. The exact conditions are
hardware dependent, but generally disabling the stencil buffer and certain alpha capabilities will allow
the early-z to take place. Being a purely hardware component, there’s no API state to specifically
enable or disable this early-z test, it will just automatically happen under the right circumstances.
Unfortunately, this also means it’s hard to test whether early-z is actually taking place, but as ren-
dering front-to-back has overdraw benefits anyway, there’s no harm in trying to utilize the early-z, too.

2

Frustum Culling

When rendering meshes, each individual triangle is clipped against the screen, so that only those
triangles that are actually on screen pass to the fragment shader. However, this means that that
vertex and geometry shaders will still run for every triangle of an object, even if it’s not on screen at
all! Fortunately, there is a solution to this - Frustum Culling.

A frustum is the 6 sided shape formed that fully encloses everything that can be seen. The shape
formed depends on the type of projection applied to the scene - an orthographic projection will pro-
duce a cuboid frustum, and a perspective projection will form a pyramid shape, due to the vertical
and horizontal field of vision. In either case, the near and far values used in the projection matrix will
form the front and back of the shape.

Each of these 6 frustum sides can be represented using a plane - an infinitely large boundary that
splits space into two half spaces, the space behind it, and the space in front of it. If a mesh is entirely
behind any of the 6 frustum planes, rendering it can be skipped, as it will not be seen on screen,
saving costly vertex processing.

Bounding Volumes

In order to efficiently test whether an object is within the viewing frustum or not, it is common to
test the bounding volume of its geometry. This is a simple shape, such as a cube or a sphere, that
completely envelops an object - much as the frustum completely envelops everything the camera can
see. So, instead of testing whether every vertex is inside a viewing frustum, a small number of simple
calculations can be performed.

An example game character and two example bounding volumes, a sphere and a box

It is unlikely that these shapes will conform exactly to the objects you try to draw in your graphical
scenes, but as long as these volumes completely surround an object, they will serve their purpose in
frustum culling. Although it possible an object will sometimes be make it to the vertex processing
stage when it is not really on screen (There’s a lot of empty space below the monster’s arms in that
example above...), performing frustum culling generally results in an overall increase in rendering
performance.

3

Culling Equations

As mentioned earlier, the view frustum can be thought of as 6 planes. The classic equation for a plane
is as follows:

ax + by + cz + d = 0

Where (a, b, c) is the normal of the plane, d is the plane’s distance from the origin along the
normal, and (x, y, z) is a reference vector. We’ll cover normals in further detail later in the tutorial
series, but for now, if you don’t know already, a normal is a direction vector, orthogonal to a surface.
For example, the normal of your desk faces straight up, and for a plane, points away from the plane:

Example planes (blue) and their normals (green), and their relation to the origin (black dot)

We can rewrite the equation slightly, to the more simple:

(N · V) + d = 0

Where N is the normal vector, V is the reference vector, and the dot represents the dot product of
two vectors:

dot(Vector3 a, Vector3 b) = axbx + ayby + azbz

which as you can see, is equivelent to the original equation. What this equation means is that a
plane is defined as every reference point in space where the above equation holds true. More gen-
erally, the equation results in the distance of the reference vector from the plane - if the distance is
negative, then the point is behind the plane, if it is positive it is in front of the plane. This equation
can easily be extended out to test whether a sphere is inside the plane, by checking whether distance
is less than the negated radius of the sphere.

Examples of red point being inside and outside a plane

So, instead of performing vertex shader operations on potentially huge meshes that may not even
contribute to the final visible scene, we can cull a mesh simply by comparing the result of a dot product
and an add, for each plane, and skipping the entire draw process for the mesh if it fails.

4

Deriving a Frustum

OK, so that’s what a frustum is, what culling does, and how it does it, but how to actually generate
a viewing frustum? To generate the 6 sides of a viewing frustum, we can derive them from a matrix
- the one formed by multiplying the current projection matrix by the current view matrix. The view
matrix is required to set up the position and orientation in Cartesian space, while the projection
matrix is required to set the near and far plane positions, and the angles of the others, according to
the projection matrices vertical field of view. Once we have this matrix, we can extract the axis for
each of the planes from each row, with the distance from the origin being the fourth value in the row

To account for any perspective added by the projection matrix, each axis must be either added to,
or subtracted from, the w axis, and the axis distance added to or subtracted from the w distance:

Right Plane Normal = w axis - x axis Distance = w distance - x distance
Left Plane Normal = w axis + x axis Distance = w distance + x distance

You can think of this as tilting the normal to match the field of view. Finally, before these values can
be used, they must be normalised - both the direction vector and distance must be divided by the
length of the direction vector. The length of a vector can be determined as follows:

|V | =
√
V x2 + V y2 + V z2

Which you should quickly notice is the same as the square root of the dot product of a vector and
itself.

|V | =
√

(V · V)

Doing so will make the plane normal unit length, and make the distance how far the plane is from
the origin, making the values suitable for use in the plane equation earlier.

5

Example Program

To demonstrate these concepts, we’re going to create a variation on last tutorial’s program. The
CubeRobot is still going to stand at the origin, but is going to have a number of transparent panes
of glass surrounding him. This relatively simple scene would break using the Renderer we’ve been
using so far. Depending on their position in the scene graph, the panes of glass could be drawn either
before or after the robot, which would not play nicely with their transparent effect - neither would
which way through the panes of glass the camera was looking.

Using what we’ve learnt in this tutorial, we can solve these problems, by traversing the scene node
and splitting the nodes into those which are opaque, and those which are transparent. They can then
be sorted according to how far away they are from the view origin. We can then draw the opaque
nodes from front to back to take advantage of the early z test, and then draw the transparent objects
from back to front, producing correct alpha influenced colours. For good measure, we’re going to add
the capability to frustum cull SceneNodes, using a simple sphere radius check - this isn’t perfect for
the cubes in our scene, but should demonstrate the frustum culling ability well enough. We’re going
to need to make two new classes in the nclgl project - A Frustum class, and a Plane class. We’ll keep
using the same old Main file from Tutorial 2, though!

SceneNode Class

Our SceneNode class needs a few little changes. We have a couple of new member variables, along
with accessor functions. To perform frustum culling we need a something to test against - we’re going
to keep things simple and have a bounding sphere for each object, represented by a single radius float.
To sort the SceneNodes, we need to store their distance from the camera, again as a float. We also
need a static function that can perform a comparison against this float - you’ll see how this works
soon.

Header file

1 ...

2 public:

3 float GetBoundingRadius () const {return boundingRadius ;}

4 void SetBoundingRadius(float f) {boundingRadius = f;}

5

6 float GetCameraDistance () const {return distanceFromCamera ;}

7 void SetCameraDistance(float f) {distanceFromCamera = f;}

8

9 static bool CompareByCameraDistance(SceneNode*a,SceneNode*b) {

10 return (a->distanceFromCamera <

11 b->distanceFromCamera) ? true : false;

12 }

13 ...

14 protected:

15 ...

16 float distanceFromCamera;

17 float boundingRadius;

18 ...

SceneNode.h

6

Class file

Of course, if our SceneNode class has new member variables, they must be initialised in the con-
structor:

1 SceneNode :: SceneNode(Mesh*mesh , Vector4 colour) {

2 ...

3 boundingRadius = 1.0f;

4 distanceFromCamera = 0.0f;

5 ...

6 }

SceneNode.cpp

Plane Class

Header file

Our Frustum class is built up from 6 Planes. As described earlier, these have 4 values - a 3-component
vector, and a distance value. Our simple Plane class has accessors for these values, and to ease the
creation of Planes, has a constructor that sets these values directly. This constructor will also
perform the normalisation described earlier to produce the correct values. We also require functions
to determine which side of a plane a sphere is.

1 #pragma once

2 #include "vector3.h"

3

4 class Plane {

5 public:

6 Plane(void){};

7 Plane(const Vector3 &normal , float distance , bool normalise=false);

8 ~Plane(void){};

9

10 void SetNormal(const Vector3 &normal) {this ->normal = normal ;}

11 Vector3 GetNormal () const {return normal ;}

12

13 void SetDistance(float dist) {distance = dist;}

14 float GetDistance () const {return distance ;}

15

16 bool SphereInPlane(const Vector3 &position , float radius) const;

17

18 protected:

19 Vector3 normal;

20 float distance;

21 };

Plane.h

Class file

The constructor takes three values - a normal, a distance from the origin, and a bool, which
determines whether or not the other values should be normalised or not. If so, we work out the length
of the vector by taking the square root of the dot product of it and itself, and then dividing the normal
and distance by the result.

7

1 #include "Plane.h"

2

3 Plane ::Plane(const Vector3 &normal , float distance , bool normalise) {

4 if(normalise) {

5 float length =sqrt(Vector3 ::Dot(normal ,normal));

6

7 this ->normal = normal / length;

8 this ->distance = distance / length;

9 }

10 else{

11 this ->normal = normal;

12 this ->distance = distance;

13 }

14 }

Plane.cpp

We covered Sphere / Plane checks earlier, so the code in the SphereInPlane function shouldn’t
be too difficult to understand - it’s just the classic plane equation, with an added allowance for the
radius of our bounding sphere.

15 bool Plane:: SphereInPlane(const Vector3 &position ,

16 float radius) const {

17 if(Vector3 ::Dot(position ,normal)+ distance <= -radius) {

18 return false;

19 }

20 return true;

21 }

Plane.cpp

Frustum Class

Header file

Our Frustum class is not very complex. It contains 6 Planes, one for each side of the pyramid shape
the view frustum forms. We need a public function to generate a view frustum from a matrix, and
a public function to determine whether one of our SceneNodes is within the frustum.

1 #pragma once

2

3 #include "Plane.h"

4 #include "Matrix4.h"

5 #include "SceneNode.h"

6 class Matrix4; // Compile the Mat4 class first , please!

7

8 class Frustum {

9 public:

10 Frustum(void) {};

11 ~Frustum(void) {};

12 void FromMatrix(const Matrix4 &mvp);

13 bool InsideFrustum(SceneNode&n);

14 protected:

15 Plane planes [6];

16 };

Frustum.h

8

Class file

To determine whether a SceneNode is inside the view frustum we use the function InsideFrustum. In
our simple SceneNode system, we’re going to assume everything is contained within spheres, so we
can simply do a sphere / plane check against each of the 6 Planes that make up the frustum. If the
bounding sphere of the SceneNode is outside any of the frustum planes, it cannot be seen, and so
should be discarded. Only if it is inside all of the planes should it be drawn.

1 #include "Frustum.h"

2 bool Frustum :: InsideFrustum(SceneNode&n) {

3 for(int p = 0; p < 6; ++p) {

4 if(! planes[p]. SphereInPlane(n.GetWorldTransform ().

5 GetPositionVector (),n.GetBoundingRadius ())) {

6 return false; // scenenode is outside this plane!

7 }

8 }

9 return true; // Scenenode is inside every plane ...

10 }

Frustum.cpp

That’s simple enough, but how to actually determine the frustum planes to test against? As we
saw earlier, we can build up these planes using a matrix - one formed by multiplying the current
projection and view matrices together. The FromMatrix performs the task of generating the corrent
planes, using the Plane constructor to perform the normalisation. We extract each axis from the
matarix, and then add or subtract them as necessary to tilt the normals to account for the field of
vision of the projection matrix. The FromMatrix function assumes that the mat parameter is already
the correct projection · view matrix.

11 void Frustum :: FromMatrix(const Matrix4 &mat) {

12 Vector3 xaxis =Vector3(mat.values [0],mat.values [4],mat.values [8]);

13 Vector3 yaxis =Vector3(mat.values [1],mat.values [5],mat.values [9]);

14 Vector3 zaxis =Vector3(mat.values [2],mat.values [6],mat.values [10]);

15 Vector3 waxis =Vector3(mat.values [3],mat.values [7],mat.values [11]);

16

17 // RIGHT

18 planes [0] = Plane(waxis - xaxis ,

19 (mat.values [15] - mat.values [12]), true);

20 //LEFT

21 planes [1] = Plane(waxis + xaxis ,

22 (mat.values [15] + mat.values [12]), true);

23 // BOTTOM

24 planes [2] = Plane(waxis + yaxis ,

25 (mat.values [15] + mat.values [13]), true);

26 //TOP

27 planes [3] = Plane(waxis - yaxis ,

28 (mat.values [15] - mat.values [13]), true);

29 //FAR

30 planes [4] = Plane(waxis - zaxis ,

31 (mat.values [15] - mat.values [14]), true);

32 //NEAR

33 planes [5] = Plane(waxis + zaxis ,

34 (mat.values [15] + mat.values [14]), true);

35 }

Frustum.cpp

9

CubeRobot Class

As we now have a bounding sphere radius for each node in our scene graph, we must set these values as
appropriate for our CubeRobot’s various limbs. This is performed simply, by using the new SceneNode
function SetBoundingRadius in the CubeRobot constructor:

1 CubeRobot :: CubeRobot(void) {

2 ...

3 body ->SetBoundingRadius (15.0f);

4 head ->SetBoundingRadius (5.0f);

5

6 leftArm ->SetBoundingRadius (18.0f);

7 rightArm ->SetBoundingRadius (18.0f);

8

9 leftLeg ->SetBoundingRadius (18.0f);

10 rightLeg ->SetBoundingRadius (18.0f);

11 ...

12 }

CubeRobot.cpp

Renderer Class

In order to accommodate frustum culling and separate node lists, we need to change our Renderer
class a bit. We need three new protected member variables - a variable to keep the current view
frustum, and two std::vectors, to store the opaque and transparent scene nodes. Along with the
DrawNode function we created last tutorial, we need 4 new functions, all of them related to the lists
of SceneNodes. Every frame, we’re going to perform the following cycle of operations:

1) Update the scene graph via the root node’s Update function.

2) Cull nodes outside the view frustum and put those inside into their correct vector, using the
function BuildNodeLists.

3) Sort the two node vectors by their distance from the camera, in the function SortNodeLists.

4) Draw the opaque nodes, followed by the transparent nodes, via the DrawNodes function.

5) Clear the frame’s vectors, using ClearNodeLists.

Sounds like a big change, but each of those functions is quite small, as you’ll see shortly.

Header file

1 #pragma once

2

3 #include "./ nclgl/OGLRenderer.h"

4 #include "./ nclgl/Camera.h"

5 #include "./ nclgl/SceneNode.h"

6 #include "./ nclgl/Frustum.h"

7 #include "CubeRobot.h"

8 #include <algorithm > //For std::sort ...

9

10 class Renderer : public OGLRenderer {

11 public:

12 Renderer(Window &parent);

10

13 virtual ~Renderer(void);

14

15 virtual void UpdateScene(float msec);

16 virtual void RenderScene ();

17

18 protected:

19 void BuildNodeLists(SceneNode* from);

20 void SortNodeLists ();

21 void ClearNodeLists ();

22 void DrawNodes ();

23 void DrawNode(SceneNode*n);

24

25 SceneNode* root;

26 Camera* camera;

27 Mesh* quad;

28

29 Frustum frameFrustum;

30

31 vector <SceneNode*> transparentNodeList;

32 vector <SceneNode*> nodeList;

33 };

Renderer.h

Class file

As usual, our Renderer class begins with its constructor. We keep things the same as last tutorial up
until line 14, where we initialise the quad variable, and set its texture to be the stained glass texture
we used in the depth and transparency tutorial.

1 #include "Renderer.h"

2

3 Renderer :: Renderer(Window &parent) : OGLRenderer(parent) {

4 CubeRobot :: CreateCube ();

5 projMatrix = Matrix4 :: Perspective (1.0f ,10000.0f,

6 (float)width/(float)height ,45.0f);

7

8 camera = new Camera ();

9 camera ->SetPosition(Vector3 (0 ,100 ,750.0f));

10

11 currentShader = new Shader(SHADERDIR"SceneVertex.glsl",

12 SHADERDIR"SceneFragment.glsl");

13

14 quad = Mesh:: GenerateQuad ();

15 quad ->SetTexture(SOIL_load_OGL_texture(

16 TEXTUREDIR"stainedglass.tga",SOIL_LOAD_AUTO ,SOIL_CREATE_NEW_ID , 0));

17

18 if(! currentShader ->LinkProgram () || !quad ->GetTexture ()) {

19 return;

20 }

Renderer.cpp

Now for the scene generation. We initialise a new root SceneNode, and add a number of quads to it
as children - these will represent large panes of glass. As these nodes have an alpha value less than
1.0, they’ll be placed in the transparent node list. Then, we add a CubeRobot to the root node. In the
old rendering method, this wouldn’t work, as the robot would be drawn after the transparent quads,
and result in incorrect alpha blending.

11

21 root = new SceneNode ();

22

23 for(int i = 0; i < 5; ++i) {

24 SceneNode * s = new SceneNode ();

25 s->SetColour(Vector4 (1.0f,1.0f,1.0f,0.5f));

26 s->SetTransform(Matrix4 :: Translation(

27 Vector3 (0 ,100.0f, -300.0f + 100.0f + 100 * i)));

28 s->SetModelScale(Vector3 (100.0f, 100.0f, 100.0f));

29 s->SetBoundingRadius (100.0f);

30 s->SetMesh(quad);

31 root ->AddChild(s);

32 }

33

34 root ->AddChild(new CubeRobot ());

Renderer.cpp

To finish the constructor, we enable depth testing and alpha blending, and set init to true.

35 glEnable(GL_DEPTH_TEST);

36 glEnable(GL_BLEND);

37 glBlendFunc(GL_SRC_ALPHA , GL_ONE_MINUS_SRC_ALPHA);

38 init = true;

39 }

Renderer.cpp

In the destructor, we delete the scene graph, along with the quad and cube Meshes.

40 Renderer ::~ Renderer(void) {

41 delete root;

42 delete quad;

43 delete camera;

44 CubeRobot :: DeleteCube ();

45 }

Renderer.cpp

In RenderScene, we build up the current frame’s view frustum, and, like last tutorial, update the
scene graph via a call to the Update function of root.

46 void Renderer :: UpdateScene(float msec) {

47 camera ->UpdateCamera(msec);

48 viewMatrix = camera ->BuildViewMatrix ();

49 frameFrustum.FromMatrix(projMatrix*viewMatrix);

50

51 root ->Update(msec);

52 }

Renderer.cpp

For every frame’s rendering, we build up two lists of SceneNodes - those that are opaque, and those
that are transparent. We do this via the recursive function BuildNodeLists, starting from the scene
graph root. For each node, we first check whether it is inside the frustum, and if so we calculate the
node’s distance from the camera, and place the node in the correct vector. Then, each of the node’s
children call BuildNodeLists in turn, building up two complete vectors, which between them, contain
every visible SceneNode.

12

There are two things to note here. First off, we’re using the distance squared. When used to
sort the scene nodes, this will preserve their relative ordering, but avoids having to perform a square
root for every object in the graph to determine their exact distance. Second, we’re cheating a little
bit in regards to what counts as a transparent node. For the purposes of this tutorial, we’re going
to test against the SceneNode colour variable. Technically, the Mesh of a SceneNode could have an
alpha-mapped texture applied to it, but correctly rendering such nodes is left to further work!

53 void Renderer :: BuildNodeLists(SceneNode* from) {

54 if(frameFrustum.InsideFrustum (*from)) {

55 Vector3 dir = from ->GetWorldTransform (). GetPositionVector () -

56 camera ->GetPosition ();

57 from ->SetCameraDistance(Vector3 ::Dot(dir ,dir));

58

59 if(from ->GetColour ().w < 1.0f) {

60 transparentNodeList.push_back(from);

61 }

62 else{

63 nodeList.push_back(from);

64 }

65 }

66

67 for(vector <SceneNode *>:: const_iterator i =

68 from ->GetChildIteratorStart ();

69 i != from ->GetChildIteratorEnd (); ++i) {

70 BuildNodeLists ((*i));

71 }

72 }

Renderer.cpp

Once BuildNodeLists has iterated through every node in the scene graph, we can sort them. To
do so we use std::sort. This takes two iterator objects, and a function pointer. It then iterates
through all the objects between the start and end iterator object, sorting them by the result of the
function pointer. The function we’re going to use is the CompareByCameraDistance function of the
SceneNode class. This will sort the SceneNodes so that the first node in the vector is the closest node
to the camera, and the last the farthest away node. We do this for both opaque and transparent nodes.

73 void Renderer :: SortNodeLists () {

74 std::sort(transparentNodeList.begin(),

75 transparentNodeList.end(),

76 SceneNode :: CompareByCameraDistance);

77 std::sort(nodeList.begin(),

78 nodeList.end(),

79 SceneNode :: CompareByCameraDistance);

80 }

Renderer.cpp

To draw our scene graph, we use the DrawNodes function. it’s simply two for loops - we draw
the opaque nodes in the nodeList first, and then the transparentNodeList. Note how the transparent
nodes are draw in reverse order, simply by using the stl reverse iterator functionality.

82 void Renderer :: DrawNodes () {

83 for(vector <SceneNode *>:: const_iterator i = nodeList.begin ();

84 i != nodeList.end (); ++i) {

85 DrawNode ((*i));

86 }

13

87 for(vector <SceneNode *>:: const_reverse_iterator i =

88 transparentNodeList.rbegin ();

89 i != transparentNodeList.rend (); ++i) {

90 DrawNode ((*i));

91 }

92 }

Renderer.cpp

We need to modify our DrawNode function slightly. In the last tutorial, we could draw the entire
scenegraph using one DrawNode call, as the function was recursive, and went through the entire scene
graph. As we have lists of nodes this time around, we don’t need to do this, so we remove the for loop.

93 void Renderer :: DrawNode(SceneNode*n) {

94 if(n->GetMesh ()) {

95 glUniformMatrix4fv(glGetUniformLocation(

96 currentShader ->GetProgram (), "modelMatrix"), 1,false ,

97 (float *)&(n->GetWorldTransform ()* Matrix4 :: Scale(n->GetModelScale ())));

98

99 glUniform4fv(glGetUniformLocation(currentShader ->GetProgram (),

100 "nodeColour"),1,(float *)&n->GetColour ());

101

102 glUniform1i(glGetUniformLocation(currentShader ->GetProgram (),

103 "useTexture"),(int)n->GetMesh()->GetTexture ());

104

105 n->Draw(*this);

106 }

107 }

Renderer.cpp

Finally, we have RenderScene. Instead of calling DrawNode on the root, as in the last tutorial,
this time we’re going to call DrawNodes, drawing our two lists of nodes. Also, now we’re done with
the contents of the two SceneNode vectors, we must empty them - otherwise they’d get filled with
duplicate nodes every frame!

108 void Renderer :: RenderScene () {

109 BuildNodeLists(root);

110 SortNodeLists ();

111

112 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

113

114 glUseProgram(currentShader ->GetProgram ());

115 UpdateShaderMatrices ();

116

117 glUniform1i(glGetUniformLocation(currentShader ->GetProgram (),

118 "diffuseTex"), 0);

119 DrawNodes ();

120

121 glUseProgram (0);

122 SwapBuffers ();

123 ClearNodeLists ();

124 }

125 void Renderer :: ClearNodeLists () {

126 transparentNodeList.clear ();

127 nodeList.clear ();

128 }

Renderer.cpp

14

Tutorial Summary

Once the program has been compiled and ran, you should see the CubeRobot again, this time through
some stained glass windows. A fairly abstract scene, but one which introduces some important con-
cepts. You’ve solidified your knowledge of scene node traversal, this time to split nodes into those
that are opaque, and those that are transparent. You’ve learnt how to take advantage of the early z
pass by drawing opaque nodes from front to back, and how to mostly solve the issue of transparent
objects by drawing such nodes in back to front order, after other nodes. Finally, you’ve seen how to
perform simple frustum culling, using spheres. In the next two tutorials, you’ll see how to use the
new concepts of indices and transformation hierarchies to implement skeletal animation - a modern
graphical technique for generating high-quality animations.

Further Work

1) As you’ve probably realised, plane / sphere checking, although very fast is not ideal for every type
of shape - there’s a lot of wasted space in the bounding sphere for the stained glass windows, for
example. Investigate bounding boxes, specifically Object Oriented Bounding Boxes, and Axis Aligned
Bounding Boxes. Perhaps there should be an abstract BoundingVolume class, from which a Bound-
ingSphere class derives from...

2) A popular way of increasing rendering performance is to make a node’s bounding area large enough
to envelope all of its children, allowing all child nodes of a node outside of a frustum to be quickly
culled. How would you implement this? Scene graph traversals can go upwards from a leaf to the root...

3) The SceneNode class currently relies on its alpha value in order to be correctly sorted by trans-
parency. What about SceneNodes with alpha-mapped Mesh textures? How to correctly sort such
Meshes? Investigate the OpenGL function glGetTexLevelParameter, and how it could be used to
determine whether a texture has an alpha component...

15

